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Abstract: We calculate the semileptonic form factors fB→η
+ (q2) and fB→η′

+ (q2) from

QCD sum rules on the light-cone (LCSRs), to NLO in QCD, and for small to moderate

q2, 0 ≤ q2 ≤ 16GeV2. We include in particular the so-called singlet contribution, i.e.

weak annihilation of the B meson with the emission of two gluons which, thanks to the

U(1)A anomaly, couple directly to η(′). This effect is included to leading-twist accuracy.

This contribution has been neglected in previous calculations of the form factors from

LCSRs. We find that the singlet contribution to fB→η′

+ can be up to 20%, while that to

fB→η
+ is, as expected, much smaller and below 3%. We also suggest to measure the ratio

B(B → η′eν)/B(B → ηeν) to better constrain the size of the singlet contribution.
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1. Introduction

B → η(′) transitions are interesting for a number of reasons: at tree-level, they involve

a b → u transition and hence are sensitive to the CKM matrix element |Vub|. Its precise

determination is crucial for the interpretation of the “tension” [1] that has emerged be-

tween the determination of |Vub| from, on the one hand, inclusive semileptonic B → Xuℓν

decays [2], and, on the other hand, global fits [1, 3] and the exclusive decay B → πℓν [4 – 7].

The inclusive value of |Vub| is larger than that from other determinations and hints at a

non-zero new-physics contribution to the Bd mixing phase φd, i.e. φd 6= 2β [8]. While

an analysis of all available experimental and theoretical information on B → πℓν found

no “significant” disagreement between the exclusive and the inclusive values of |Vub| [6],

the situation has changed very recently, when the HPQCD lattice collaboration reported

a mistake in their calculation of the form factor fB→π
+ published in ref. [7]; the corrected

form factor is larger and hence yields a smaller |Vub| [7]. The authors of ref. [6] have since

then published an update [9] of their previous analysis and now conclude that the exclusive

value of |Vub| is in perfect agreement with the determination from global fits and that “the

hints of a disagreement with inclusive determinations of |Vub| are strengthened”. Also very

recently, Neubert has argued [10] that the value of |Vub| obtained by the HFAG collabora-

tion [11] is dominated by observables with small efficiency and that, selecting observables

with maximum efficiency instead, the resulting |Vub| is smaller than the HFAG average.

Given this situation it is important to collect information on |Vub| also from other exclusive

processes. B → η(′)ℓν decays offer the opportunity for doing so.

Another reason why B → η(′) transitions are interesting is their sensitivity to η-η′

mixing and the effects of the U(1)A anomaly, which is responsible for the large mass of the

η′ and also induces potentially large flavour-singlet contributions to amplitudes involving

η(′). Indeed the unexpectedly large branching fractions of inclusive B → η′X and exclusive

B → η′K decays, as compared to e.g. B → π transitions, have been attributed to an
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Figure 1: Flavour-singlet contribution to a generic B → η′ transition.

enhanced flavour-singlet contribution [12], which is defined as the amplitude for producing

either a quark-antiquark pair in a singlet state (uū + dd̄ + ss̄) which does not contain

the B’s spectator quark, or a pair of gluons, followed by hadronization into an η(′). A

generic contribution of this type is shown in figure 1. In ref. [13] it was found that a rather

large singlet-contribution of ca. 30% to the form factor fB→η′

+ would bring the central

values of theoretical predictions for B → η′K observables in QCD factorisation into good

agreement with experimental results, although the theoretical uncertainties are too large

to allow a definite conclusion on the size of the singlet contributions. On the other hand,

a more recent analysis of B decays with isosinglet final states, formulated in SCET, finds

that, because of large experimental uncertainties of the data used to fit non-perturbative

parameters, the singlet contribution to form factors is consistent with 0 [14].

While the interplay of singlet and octet contributions is well understood at the level

of local matrix elements, i.e. decay constants (wave functions at the origin) [15 – 17], less is

known about the shape of these wave functions, which are relevant for dynamical quantities

like form factors. In frameworks based on QCD factorisation the mesons’ Fock-state wave

functions enter in the form of light-cone distribution amplitudes (DAs). Constraints on

the leading parameters of these DAs have been obtained from the analysis of the η(′)γ

transition form factor [18 – 20] and of the inclusive decay Y (1S) → η′X [20]. In principle,

these DAs can also be constrained from a measurement of the form factors of B → η(′),

for instance from B(B → η′ℓν)/B(B → ηℓν), as suggested in ref. [21].

Despite the strong phenomenological interest in the size of the singlet contribution

to fB→η(′)

+ , there is, to the best of our knowledge, only a single calculation available,

based on the perturbative QCD approach [22]. Ref. [22] finds that this contribution is

negligible in fB→η
+ , and reaches a few percent in fB→η′

+ . Another well-known method for

the calculation of B → light meson form factors are QCD sum rules on the light cone

(LCSRs) [23 – 25]. Ref. [25], for instance, provides form factors for B → (π,K, η) decays,

but does not include the singlet contribution to B → η, nor a calculation of B → η′

form factors. It is the purpose of this paper to remedy this situation and complete the

calculation of B → light pseudoscalar meson form factors from LCSRs by including also

the flavour-singlet contributions.

Our paper is organised as follows: in section 2 we define the two most common η-η′

mixing schemes and review η(′) DAs. In section 3 we derive LCSRs for the B → η(′) form
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factors. In section 4 we present results and conclude.

2. η and η′ mixing and distribution amplitudes

There are two different mixing schemes in use to describe the η-η′ system: the singlet-octet

(SO) and the quark-flavour scheme (QF) [15]. In the former, the couplings of the relevant

axial-vector currents to the meson P = η, η′ are given by

〈0|J i
µ5|P (p)〉 = if i

P pµ (i = 1, 8), (2.1)

where J8
µ5 denotes the SU(3)F-octet and J1

µ5 the SU(3)F-singlet axial-vector current, re-

spectively. The four parameters f i
P define two decay constants fi of a hypothetical pure

singlet or octet state |ηi〉 and also two mixing angles θi via
(

f8
η f1

η

f8
η′ f1

η′

)
=

(
cos θ8 − sin θ1

sin θ8 cos θ1

)(
f8 0

0 f1

)
. (2.2)

The advantage of this scheme is that the impact of the U(1)A anomaly is plainly localised

in f1, via the divergence of the singlet current J1
µ5, while θi 6= 0 and f8 6= fπ are SU(3)F-

breaking effects. By the same token, the SO scheme also diagonalises the renormalisation-

scale dependence of parameters and hence is very useful for checking the cancellation of

divergences in perturbative calculations: f8 and θi are scale-independent, while f1 renor-

malises multiplicatively [26]:

µ
df1

dµ
= −nf

(αs

π

)2
f1 + O(α3

s) . (2.3)

In the QF mixing scheme, on the other hand, the basic axial-vector currents are

Jq
µ5 =

1√
2

(
ūγµγ5u + d̄γµγ5d

)
, Js

µ5 = s̄γµγ5s , (2.4)

and the corresponding couplings to P = η, η′ are given by

〈0|Jr
µ5|P (p)〉 = if r

P pµ (r = q, s) . (2.5)

In complete correspondence to (2.2) one has
(

f q
η f s

η

f q
η′ f s

η′

)
=

(
cos φq − sin φs

sin φq cos φs

)(
fq 0

0 fs

)
. (2.6)

The basic difference to the SO scheme is that now the difference between the two angles φq,s

is not caused by SU(3)F effects, like that between θ1 and θ8, but by an OZI-rule violating

contribution, as explained in ref. [16]. While the numerical values of θi differ largely, with

typical values θ8 ≈ −20◦ and θ1 ≈ −5◦, one finds φs −φq
<∼ 5◦, with φq ≈ φs ≈ 40◦ [15, 16].

This led the authors of ref. [15] to suggest the QF scheme as an approximation to describe

η-η′ mixing, based on neglecting the difference φq −φs (and all other OZI-breaking effects):

φ ≡ φq,s, φq − φs ≡ 0 . (2.7)
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The advantage of this scheme is that it has only 3 parameters, fq, fs and φ, which implies

that the mixing of states is the same as that of the decay constants:
(

η

η′

)
=

(
cos φ − sinφ

sin φ cos φ

)(
ηq

ηs

)
. (2.8)

The disadvantage is that, due to the neglection of OZI-breaking effects, the renormalisa-

tion-scale dependence of f1 is not reproduced – as it is induced precisely by OZI-breaking

terms [16]. While this is not really an issue numerically, as the scale-dependence of f1 is

a two-loop effect, eq. (2.3), the problem of the incompatibility of the QF scheme with the

scale-dependence of parameters will come back at the level of non-local matrix elements,

i.e. DAs, see below.

Given enough data to fix all independent parameters, there is no reason to prefer the

QF over the SO scheme. For DAs, however, the SO scheme leads to a proliferation of

unknown parameters, while the QF scheme is more restrictive, see below. For this reason

we decide to use the QF scheme in this paper. Its basic parameters have been determined

as [15]

fq = (1.07 ± 0.02)fπ, fs = (1.34 ± 0.06)fπ , φ = 39.3◦ ± 1.0◦ . (2.9)

This can be translated into values for the SO parameters as

f8 =

√
1

3
f2

q +
2

3
f2

s = (1.26 ± 0.04)fπ ,

f1 =

√
2

3
f2

q +
1

3
f2

s = (1.17 ± 0.03)fπ ,

θ8 = φ − arctan[
√

2fs/fq] = −21.2◦ ± 1.6◦ ,

θ1 = φ − arctan[
√

2fq/fs] = −9.2◦ ± 1.7◦ . (2.10)

Note that in the QF scheme fq,s are scale-independent parameters, and so is f1 as obtained

from the above relations. The SO decay constants can be expressed in terms of the QF

ones and the angle φ as

(
f8

η f1
η

f8
η′ f1

η′

)
=

(
cos φ − sinφ

sin φ cos φ

)(
fq 0

0 fs

)


√
1
3

√
2
3

−
√

2
3

√
1
3


 . (2.11)

Let us now turn to light-cone DAs, that is the extension of matrix elements like (2.1)

and (2.5) to those over non-local operators on the light-cone. This paper is not the place

to give a thorough discussion of the properties of DAs, for which we refer to reviews [27]

and to refs. [28, 29]. Suffice it to say that the DAs are ordered in terms of increasing

twist, with the minimum, or leading, twist for meson DAs being two. Motivated by the

structure of the evolution of DAs under a change of the renormalisation scale µ, they are

expanded in terms of so-called asymptotic DAs multiplied by Gegenbauer polynomials.

In the context of this paper it is important to recall that the U(1)A anomaly induces, in

addition to two-quark DAs, also two-gluon DAs, of both leading and higher twist. Some
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properties of these higher-twist DAs have been studied in ref. [20]. In this paper we only

include the effects of the leading-twist two-gluon DA, which is justified as its effects turn

out to be small and higher-twist DAs are estimated to have even smaller impact. We will

come back to that in section 4.

We define the twist-2 two-quark DAs of η(′) as [19]

〈0|Ψ̄(z)Ci/zγ5[z,−z]Ψ(−z)|P (p)〉 = i(pz)f i
P

∫ 1

0
du eiξ(pz)φi

2;P (u) . (2.12)

Here zµ is a light-like vector, z2 = 0, and [x, y] stands for the path-ordered gauge factor

along the straight line connecting the points x and y,

[x, y] = P exp

[
ig

∫ 1

0
dt (x − y)µAµ(tx + (1 − t)y)

]
. (2.13)

u (1 − u) is the momentum fraction carried by the quark (antiquark) in the meson, ξ is

short for 2u − 1. φi
2;P (u) is the twist-2 DA of the meson P with respect to the current

whose flavour content is given by Ci, with Ψ = (u, d, s) the triplet of light-quark fields in

flavour space. For the SO currents, one has C1 = 1/
√

3 and C8 = λ8/
√

2, while for the QF

currents Cq = (
√

2C1 + C8)/
√

3 and Cs = (C1 −
√

2C8)/
√

3, with λi the standard Gell-Mann

matrices.

The gluonic twist-2 DA is defined as1

〈0|Gµz(z)[z,−z]G̃µz(−z)|P (p)〉 =
1

2
(pz)2

CF√
3
f1

P

∫ 1

0
du eiξ(pz)ψg

2;P (u) . (2.14)

In order to perform the calculation of the correlation function defined in the next section,

we also need the matrix element of the meson P over two gluon fields. Dropping the gauge

factor [z,−z], one has

〈0|AA
α (z)AB

β (−z)|P (p)〉 =
1

4
ǫαβρσ

zρpσ

(pz)

CF√
3

f1
P

δAB

8

∫ 1

0
du eiξ(pz)

ψg
2;P (u)

u(1 − u)
. (2.15)

Because of the positive G-parity of η and η′, the two-quark DAs are symmetric under

u ↔ 1 − u:

φi
2;P (u) = φi

2;P (1 − u) ; (2.16)

they are expanded in terms of Gegenbauer polynomials as

φi
2;P (u) = 6u(1 − u)


1 +

∑

n=2,4,...

aP,i
n (µ)C3/2

n (ξ)


 (i = 1, 8, q, s) ; (2.17)

aP,i
n are the quark Gegenbauer moments. As for the two-gluon DAs, the asymptotic DA is

u2j−1(1−u)2j−1 with j = 3/2 the lowest conformal spin of the operator Gµz ; the expansion

goes in terms of Gegenbauer polynomials C
5/2
n . One can show that ψg

2;P is antisymmetric:

ψg
2;P (u) = −ψg

2:P (1 − u) ; (2.18)

1This definition refers to the “σ-rescaled” DA φσ
g in ref. [19] with σ =

√
3/CF . It agrees with that

used in refs. [20, 22], which means that we can use their results for the two-gluon Gegenbauer moment Bg
2

without rescaling.
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in particular
∫ 1
0 duψg

2;P (u) = 0 and the local twist-2 matrix element 〈0|GµzG̃
µz |P 〉 vanishes.

The non-vanishing coupling 〈0|GαβG̃αβ |P 〉 induced by the U(1)A anomaly is a twist-4 effect.

The corresponding matrix elements are given, in the QF scheme, by [15]:

〈0|αsGG̃/(4π)|ηq〉 = fs(m
2
η − m2

η′) sin φ cos φ ,

〈0|αsGG̃/(4π)|ηs〉 = fq(m
2
η − m2

η′)/
√

2 sin φ cos φ . (2.19)

We will estimate the size of these effects in section 4. There are no twist-3 two-gluon

DAs and the remaining twist-4 DAs also have vanising normalisation, see ref. [20]. The

conformal expansion of the twist-2 two-gluon DA reads

ψg
2;P (u, µ) = u2(1 − u)2

∑

n=2,4,...

BP,g
n (µ)C

5/2
n−1(ξ) (2.20)

with the gluonic Gegenbauer moments BP,g
n . In this paper, we truncate both φi

2;P and ψg
2;P

at n = 2. This is due to the fact that our knowledge about these higher-order Gegenbauer

moments is very restricted. An estimate of the effect of higher Gegenbauer moments in

φ2;π on the B → π form factor fπ
+ has been given in ref. [30], based on a certain class

of models for the full DA beyond conformal expansion. The effect of neglecting aπ
n≥4 we

found to be very small, ∼ 2%. We expect the truncation error from neglecing Bg
n≥4 to be

of similar size.

φ1
2;P and ψg

2;P mix upon evolution in µ, see for instance ref. [19]. This amounts to a

mixing of aP,1
2 and BP,g

2 , resulting in the renormalisation-group equation, to LO accuracy,

µ
d

dµ

(
a1

2

Bg
2

)
= −αs

4π




100

9
−10

81

− 36 22




(
a1

2

Bg
2

)
, (2.21)

where for simplicity we have dropped the superscript P . We only quote the solution for

a1
2:

a1
2(µ) =

[(
1

2
− 49

2
√

2761

)
Lγ+

2 /(2β0) +

(
1

2
+

49

2
√

2761

)
Lγ−

2 /(2β0)

]
a1

2(µ0)

+
5

9
√

2761

[
Lγ−

2 /(2β0) − Lγ+
2 /(2β0)

]
Bg

2(µ0) (2.22)

with L = αs(µ)/αs(µ0) and the anomalous dimensions γ±
2 = (149 ±

√
2761)/9. This is to

be compared to the evolution of the octet Gegenbauer moment:

a8
2(µ) = L50/(9β0)a8

2(µ0) . (2.23)

Numerically, the evolution of a1
2 does not differ much from that of a8

2, for a wide range

of Bg
2 : assume a8

2(1GeV) ≡ a1
2(1GeV), as is the case for a strict imposition of the QF

scheme. Choose a8
2(1GeV) = 0.2, as indicated by our knowledge of twist-2 DAs of the π;

then we have a8
2(2.4GeV) = 0.137 from (2.23); 2.4GeV is a typical scale in the calculation

of form factors from LCSRs. In figure 2 we show the results of the evolution of the

– 6 –
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Figure 2: Dependence of a1
2(2.4 GeV) on Bg

2(1 GeV), eq. (2.22), for a1
2(1 GeV) = 0.2.

singlet Gegenbauer moment a1
2 from 1 to 2.4GeV, from eq. (2.22), for the range of gluon

Gegenbauer moments |Bg
2(1GeV)| < 10. Evidently the impact of the different anomalous

dimensions of a1
2 and a8

2 is negligible (a1
2(2.4GeV) = 0.137 for Bg

2 = 0) and the mixing of

Bg
2 into a1

2 is smaller than 20% within the range of Bg
2 considered.

At this point we would like to come back to the impact of evolution on the consistency

of the QF scheme. We introduce the twist-2 two-quark DAs φi
2, i = 1, 8, q, s, corresponding

to the basis states |ηi〉 in the SO and QF scheme, respectively. We then have, in terms of

the quark valence Fock states |qq̄〉 and |ss̄〉 [19]:

|ηq〉 ∼ φq
2(u)|qq̄〉 + φOZI

2 (u)|ss̄〉 , |ηs〉 ∼ φOZI
2 (u)|qq̄〉 + φs

2(u)|ss̄〉 , (2.24)

where qq̄ is shorthand for (uū + dd̄)/
√

2 and

φq
2 =

1

3
(φ8

2 + 2φ1
2) , φs

2 =
1

3
(2φ8

2 + φ1
2) , φOZI

2 =

√
2

3
(φ1

2 − φ8
2) . (2.25)

In the QF scheme, the “wrong-flavour” DA φOZI
2 , which is generated by OZI-violating in-

teractions, is set to 0. Once this is done at a certain scale, however, the different evolution

of a1
n and a8

n, eqs. (2.22) and (2.23), will generate a non-zero φOZI
2 already to LO accuracy.

A consistent implementation of the QF scheme hence requires one to either set a1,8
n ≡ 0

and also Bg
n ≡ 0, or to set a8

n ≡ a1
n and neglect the different scale-dependence of these

parameters. In practice, however, the QF scheme is an approximation anyway, motivated

by the observed smallness of one parameter, the difference of mixing angles φs − φq. The

induced non-zero DA φOZI
2 is numerically very small for the scales relevant for our calcula-

tion, µ = 1GeV and 2.4GeV. We hence implement the QF scheme for DAs as follows: we

set φ1
2 ≡ φ8

2 at the scale µ = 1GeV, which, by virtue of (2.25), implies φq
2 ≡ φs

2 at the same

scale. We then evolve a2 according to the scaling-law for the octet Gegenbauer moment,

eq. (2.23).2 We also set ψg
2;η = ψg

2;η′ ; again any SU(3)F breaking of this relation is expected

to have only very small impact on fB→η(′)

+ . The twist-2 parameters used in our calculation

are then reduced to 2: a2 and Bg
2 . For error estimates, we will also sometimes distinguish

between aη
2 and aη′

2 .

2This is equivalent to imposing the QF-scheme relation a1
2 = a8

2 as the scale µ = 2.4 GeV and defining

Bg
2 as Bg

2 (2.4 GeV).
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As far as numerics is concerned, we assume that the bulk of SU(3)F-breaking effects

is described by the decay constants via fq 6= fπ, and that SU(3)F breaking in Gegenbauer

moments is subleading. This motivates setting aq
2 = aπ

2 , with aπ
2 (1GeV) = 0.25±0.15 as an

average over a large number of calculations and fits to experimental data [29]; this number

also agrees with a recent lattice determination [31]. aq
2 = aπ

2 is justified as, as discussed in

ref. [29], there is no evidence for noticeable SU(3)-breaking effects between aπ
2 and aK

2 and

the main SU(3)-breaking in the DAs is due to non-zero odd Gegenbauer moments. In this

work we only need aq
2, and as a QCD sum rule for this parameter would look essentially the

same as that for aπ
2 , except for a slightly different value for the decay constant, fπ 6= fq,

and different numerical values for the continuum threshold s0 and the window in the Borel

parameter M2, we see no plausible source for large SU(3) breaking between aπ
2 and aq

2. To

the best of our knowledge, no calculation of Bg
2 is available. Results from fits to data have

been obtained from the η(′)γ transition form factor, yielding Bg
2(1GeV) = 9 ± 12 [19],

and the combined analysis of this form factor and the inclusive decay Y (1S) → η′X

yielding Bg
2(1.4GeV) = 4.6 ± 2.5 [20]. These results, however, have to be taken cum

grano salis as they are highly correlated with the simultaneous determination of a1
2 and

a8
2 from the same data, yielding a1

2(1GeV) = −0.08 ± 0.04, a8
2(1GeV) = −0.04 ± 0.04 [19]

and a1
2(1.4GeV) = a8

2(1.4GeV) = −0.054 ± 0.029 [20]. The same analysis applied to

the πγ form factor returns aπ
2 (1GeV) = −0.06 ± 0.03 [32]. These results are not really

compatible with those from the direct calculation of aπ
2 from lattice and QCD sum rules;

in particular the sign of aπ
2 is unambiguously fixed as being positive. A possible reason for

this discrepancy is the neglect of higher-order terms in the light-cone expansion and that,

in addition, as one of the photons in the process is nearly real with virtuality q2 ≈ 0, one

also has to take into account long-distance photon interactions, of order 1/
√

q2 [33]. For

this reason, we assume the very conservative range Bg
2(2.4GeV) = 0± 20 in the remainder

of this paper.

As far as higher-twist DAs are concerned, we only need those involving currents with

flavour content q̄q = (ūu + d̄d)/
√

2. In line with the implementation of the QF scheme for

twist-2 DAs, we include SU(3)F breaking only via the decay constants and set

1

f q

η(′)

〈0|Ψ̄(z)Cq[z,−z]ΓΨ(−z)|η( ′)(p)〉 =
1

fπ
〈0|d̄(z)[z,−z]Γu(−z)|π−(p)〉 ,

1

f q

η(′)

〈0|Ψ̄(z)[z, vz]G(vz)CqΓ[vz,−z]Ψ(−z)|η( ′)(p)〉 =

1

fπ
〈0|d̄(z)[z, vz]G(vz)Γ[vz,−z]u(−z)|π−(p)〉 , (2.26)

where Γ is the relevant Dirac structure and G(vz) the gluon field-strength tensor. The

precise definitions of all twist-3 and 4 DAs, as well as up-to-date numerical values of

the π’s hadronic parameters can be found in ref. [29]. Let us shortly comment on the

validity of this treatment for twist-3 two-quark DAs. As is well known, the normalisation

of these DAs is given, for the π, by fπm2
π/(2mq) and enters the light-cone sum rules for

B → π transitions as a 1/mb correction, see explicit formulas for the corresponding D

form factor in ref. [34]. Although suppressed by one power of the heavy quark mass, this
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contribution is numerically non-negligible due to the chiral enhancement factor. Following

the above implementation of SU(3) breaking, we set fπm2
π/(2mq) → fqm

2
π/(2mq) for ηq

(the corresponding quantity for ηs is not needed). In contrast, the inclusion of all SU(3)

effects leads one to consider the quantity

hq = fq(m
2
η cos2 φ + m2

η′ sin2 φ) −
√

2fs(m
2
η′ − m2

η) sin φ cos φ ; (2.27)

the normalisation of the twist-3 DAs of ηq is given by hq/(2mq). To leading order in the

chiral expansion and 1/Nc expansion, hq → fqm
2
π = 0.0025GeV3, which is the value

used in our scheme. As discussed in ref. [13], the full expression (2.27) yields hq =

(0.0015 ± 0.004)GeV3, i.e. a 200% uncertainty, if the errors of fq,s and φ are treated

as uncorrelated. The large error is due to a cancellation between the two terms in (2.27).

As the parameter we need is actually hq/(2mq), with mq not very well constrained (yet)

from lattice calculations3 and the correlation of the errors of fq,s and φ is not known,

we feel that a total 250% uncertainty of hq/(2mq) is slightly exaggerated and an artifact

of the numerical cancellation. Instead, we work to leading order in the chiral expansion

and set hq/(2mq) = fqB0, with B0 = m2
π/(2mq) = −2〈0|q̄q|0〉/f2

π [28]. 〈0|q̄q|0〉, the

quark condensate, is the order parameter of chiral symmetry breaking and known from

QCD sum rules to have the value 〈0|q̄q|0〉 = (−0.24 ± 0.01)3 GeV3. From this, one finds

B0 = (1.6 ± 0.2)GeV [28], which, together with the error on fq, implies a total 15% un-

certainty for the normalisation of the twist-3 DAs. This is the standard treatment of these

terms in the framework of light-cone sum rules.

3. LCSRs for gluonic contributions

The key idea of light-cone sum rules is to consider a correlation function of the weak current

and a current with the quantum numbers of the B meson, sandwiched between the vac-

uum and an η or η′ state. For large (negative) virtualities of these currents, the correlation

function is, in coordinate-space, dominated by distances close to the light-cone and can

be discussed in the framework of light-cone expansion. In contrast to the short-distance

expansion employed by conventional QCD sum rules à la SVZ [36], where non-perturbative

effects are encoded in vacuum expectation values of local operators with vacuum quantum

numbers, the condensates, LCSRs rely on the factorisation of the underlying correlation

function into genuinely non-perturbative and universal hadron DAs φ. The DAs are con-

voluted with process-dependent amplitudes TH , which are the analogues of the Wilson

coefficients in the short-distance expansion and can be calculated in perturbation theory.

Schematically, one has

correlation function ∼
∑

n

T
(n)
H ⊗ φn. (3.1)

The expansion is ordered in terms of contributions of increasing twist n. The light-cone

expansion is matched to the description of the correlation function in terms of hadrons by

3A recent unquenched calculation yields m ≡ (mu+md)/2 = (3.54+0.64
−0.35)MeV at the scale µ = 2GeV [35].
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analytic continuation into the physical regime and the application of a Borel transformation,

which introduces the Borel parameter M2 and exponentially suppresses contributions from

higher-mass states. In order to extract the contribution of the B meson, one describes

the contribution of other hadron states by a continuum model, which introduces a second

model parameter, the continuum threshold s0. The sum rule then yields the form factor in

question, f+, multiplied by the coupling of the B meson to its interpolating field, i.e. the

B meson’s leptonic decay constant fB.

LCSRs are available for the B → π,K form factor f+ to O(αs) accuracy for the

twist-2 and part of the twist-3 contributions and at tree-level for higher-twist (3 and 4)

contributions [25].

We define the B → P form factors as

〈P (p)|ūγµb|B(p+q)〉 =

{
(2p + q)µ − m2

B − m2
P

q2
qµ

}
fP
+ (q2)√

2
+

m2
B − m2

P

q2
qµ

fP
0 (q2)√

2
. (3.2)

Note that we include a factor 1/
√

2 on the right-hand side. This is to ensure that in the

limit of SU(3)F symmetry and no η-η′ mixing fη
+ = fπ

+.

In the semileptonic decay B → η(′)lνl the form factor fP
0 (P = η, η′) enters proportional

to the lepton mass m2
l and hence is irrelevant for light leptons (l = e, µ), where only fP

+

matters. The semileptonic decay can be used to determine the size of the CKM matrix

element |Vub| from the spectrum

dΓ

dq2
(B → η(′)lνl) =

G2
F |Vub|2

192π3m3
B

λ3/2(q2)|fP
+ (q2)|2 , (3.3)

where λ(x) = (m2
B + m2

P − x)2 − 4m2
Bm2

P . Alternatively, as we shall see, the ratio of

branching ratios B(B → η′ℓν)/B(B → ηℓν) can be used to constrain the gluonic Gegen-

bauer moment Bg
2 .

Our starting point for calculating fP
+ is the correlation function

ΠP
µ (p, q) = i

∫
d4x ei(qx)〈P (p)|T [ūγµb](x)j†B(0)|0〉 (3.4)

= ΠP
+(q2, p2

B)(2p + q)µ + . . .

where jB = mbūiγ5b is the interpolating field for the B meson and p2
B = (p + q)2 its

virtuality. For

m2
b − p2

B ≥ O(ΛQCDmb), m2
b − q2 ≥ O(ΛQCDmb), (3.5)

the correlation function (3.4) is dominated by light-like distances and therefore accessible to

an expansion around the light-cone. The above conditions can be understood by demanding

that the exponential factor in (3.4) vary only slowly. The light-cone expansion is performed

by integrating out the transverse and “minus” degrees of freedom and leaving only the

longitudinal momenta of the partons as relevant degrees of freedom. The integration over

transverse momenta is done up to a cutoff, µIR, all momenta below which are included

in a the DAs φn. Larger transverse momenta are calculated in perturbation theory. The
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Figure 3: Feynman diagrams of the gluonic contributions. The double line denotes the b quark,

the photon-like lines the currents in the correlation function ΠP
µ . The first diagram is divergent,

the other two are convergent.

correlation function is hence decomposed, or factorised, into perturbative contributions

T and nonperturbative contributions φ, which both depend on the longitudinal parton

momenta and the factorisation scale µIR. The schematic relation (3.1) can then be written

in more explicit form, including only two-particle DAs, as

ΠP
+(q2, p2

B) =
∑

n

∫ 1

0
duT (n)(u, q2, p2

B , µIR)φn;P (u, µIR). (3.6)

As Π+ itself is independent of the arbitrary scale µIR, the scale-dependence of T (n) and

φn must cancel each other. If there is more than one contribution of a given twist, they

will mix under a change of µIR and it is only in the sum of all such contributions that the

residual µIR dependence cancels. This is what happens with the two-quark and two-gluon

contributions to B → η(′). Eq. (3.6) is called a “collinear” factorisation formula, as the

momenta of the partons in P are collinear with the P ’s momentum. Its validity actually

has to be verified, which is done precisely by checking that the µIR dependence cancels. In

ref. [25] it has been shown that the above formula holds to O(αs) accuracy for two-quark

twist-2 and -3 contributions.

In calculating the correlation function, we use relation (2.8) between |η(′)〉 and the QF

basis states |ηq,s〉, so that

Πη
µ =

1√
2

(
Πq

µ cos φ − Πs
µ sin φ

)
, Πη′

µ =
1√
2

(
Πq

µ sin φ + Πs
µ cos φ

)
. (3.7)

As the correlation function involves the current ūγµb, Πs
µ vanishes to leading order in αs

and at O(αs) is due only to gluonic Fock states of the meson. Πq
µ, on the other hand,

receives contributions from both quark and gluon states. The quark contributions have

been calculated in ref. [25] for B → π, including O(αs) corrections to twist-2 and -3

contributions, and to tree-level accuracy for twist-4 contributions. The corresponding

expressions yield Πq
+, with the replacement fπ → fq.

In order to obtain the singlet contribution to ΠP
+, one needs to calculate the diagrams

shown in figure 3. The projection of the gluon fields onto the DA ψg
2;P can be read off

eq. (2.15). The explicit formula is given in the appendix. We check the result by verifying

– 11 –
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the cancellation of the µIR-dependent terms as described above. The relevant term in the

quark Gegenbauer moment a2 is

Πq
+ ∼ 18fqF (p2

B , q2)a2

(
1 +

αs

4π

50

9
ln

µ2
IR

m2
b

)
, (3.8)

where F (p2
B , q2) is a function of p2

B and q2. The logarithmic terms in the convolution of

the gluonic diagrams of figure 3 with ψg
2;P read

ΠP
+ ∼ − 10

9
√

3

αs

4π
Bg

2f1
P ln

µ2
IR

m2
b

F (p2
B , q2) . (3.9)

One can easily convince oneself by expressing fq via eq. (2.11) in terms of f1
η and f1

η′ ,

respectively, and inserting (3.8) into (3.7), that the renormalisation-group equation (2.21)

is fulfilled.

The final LCSR for fP
+ then reads

e−m2
B/M2

m2
BfB

fP
+ (q2)√

2
=

∫ s0

m2
b

ds e−s/M2 1

π
Im ΠP

+(s, q2) , (3.10)

with the sum-rule specific parameters M2, the Borel parameter, and s0, the continuum

threshold.

4. Results and discussion

Let us now give the results for the form factors. As usual, we replace fB in the sum

rule (3.10) by its QCD sum rule to O(αs) accuracy; this reduces the dependence of the

results on mb = (4.80±0.05)GeV. In figure 4 we plot fη
+(0) and fη′

+ (0), respectively, as func-

tions of the Borel parameter M2. The continuum threshold is chosen as s0 = 34.2GeV2,

which corresponds to the optimum s0 for the sum rule for fB [25]. The factorisation scale

µIR is chosen as intermediate between mb and an intrinsic hadronic scale 1 GeV; following

our earlier papers, we choose µ2
IR = m2

B − m2
b . The dependence of fη,η′

+ on M2 is small

in the Borel-window M2 > 6GeV2. We estimate the uncertainty in M2 as the variation

of the form factor in the interval M2 ∈ [6, 14]GeV2. In figure 4, we also show the depen-

dence of the form factors on s0 by varying it by ±0.7GeV2; also this dependence is rather

small. The central values of the most relevant hadronic input parameters are mb = 4.8GeV,

aη,η′

2 (1GeV) = 0.25 and Bg
2 = 0. As expected, fη

+(0) is not very sensitive to the singlet con-

tribution parameter Bg
2 (red/dashed-dotted curves), but rather sensitive to the Gegenbauer

moment a2 (green/short-dashed curves). For fη′

+ (0), on the other hand, the dependence

on Bg
2 is more pronounced than that of a2. Varying all relevant parameters within their

respective ranges, i.e. ∆mb = ±0.05GeV, ∆a2(1GeV) = ±0.15 and ∆Bg
2 = ±20, as well
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Figure 4: [Colour online] fη
+(0) (left) and fη′

+ (0) (right) as a function of the Borel parameter

M2 and various choices of input parameters. Solid curves: central values of input parameters and

s0 = 34.2 GeV2. Long-dashed (blue) curves: s0 varied by ±0.7 GeV2. Short-dashed (green) curves:

a2(1 GeV) varied by ±0.15. Dash-dotted (red) curves: Bg
2 varied by ±10.

4. 6. 8. 10. 12. 14.
0.65
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f
η
′

+
(0
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f

η +
(0

)

M 2 [GeV2]

Figure 5: [Colour online] fη′

+ (0)/fη
+(0) as a function of the Borel parameter M2 and various choices

of input parameters. Solid (blue) line: central values of input parameters, which corresponds to

fη′

+ (0)/fη
+(0) ≡ tanφ = 0.814. Dash-dotted (red) curves: Bg

2 varied by ±10. Short-dashed (green)

curves: aη,η′

2 (1 GeV) varied independently: aη
2 = 0.1, aη′

2 = 0.4 and aη′

2 = 0.4, aη
2 = 0.1.
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Figure 6: [Colour online] fη
+(q2) (left) and fη′

+ (q2) (right) as a function of the momentum transfer

q2 and various choices of input parameters. Solid curves: central values of input parameters and

M2 = 10 GeV2, s0 = 34.2 GeV2. Long-dashed (blue) curves: s0 varied by ±0.7 GeV2 and M2 by

±4 GeV2. Short-dashed (green) curves: a2(1 GeV) varied by ±0.15, fq/fπ by ±0.02 and φ by ±1◦.

Dash-dotted (red) curves: Bg
2 varied by ±10.
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as all twist-3 and twist-4 parameters within the ranges given in ref. [29], we find

fη
+(0) = 0.229 ± 0.005(M2) ± 0.006(s0) ± 0.016(aη

2) ± 0.007(Bg
2 ) ± 0.005(fq , φ)

±0.011(T3) ± 0.001(T4) ± 0.007(fB ,mb)

= 0.229 ± 0.024(param.) ± 0.011(syst.) , (4.1)

fη′

+ (0) = 0.188 ± 0.004(M2) ± 0.005(s0) ± 0.013(aη′

2 ) ± 0.043(Bg
2 ) ± 0.005(fq , φ)

±0.009(T3) ± 0.005(T4) ± 0.006(fB ,mb)

= 0.188 ± 0.002Bg
2 ± 0.019(param.) ± 0.009(syst.) . (4.2)

The entry labelled T4 also contains an estimate of the possible impact of the local twist-4

two-gluon matrix elements in (2.19). For this estimate, we exploit the fact that the asymp-

totic DA of the non-local generalisation of (2.19) is the same as for the twist-2 two-quark

DA: 6u(1 − u).4 We then assume that the corresponding correlation function is the same

as that for the leading conformal wave in the two-quark twist-2 contribution, i.e. the coef-

ficient in the Gegenbauer moment a0 = 1, and replace a0 by 〈0|αsGG̃/(4π)|ηq,s〉/(fq,sm
2
b).

The factor 1/m2
b comes from the fact that this is a twist-4 effect and hence suppressed by

two powers of mb with respect to the twist-2 contribution. This is only a rough estimate,

of course, as the true spectral density will be different. The result in (4.2) shows that for

small Bg
2 ≈ 2 both twist-2 and -4 two-gluon effects can indeed be of similar size. In this

case, however, the total flavour singlet contribution to fη′

+ will also be small, ∼ 0.008. In

the third lines, we have added all uncertainties from the input parameters (param.) in

quadrature and the sum-rule specific uncertainties from M2 and s0 (syst.) linearly. For

fη′

+ (0), we have displayed the dependence on Bg
2 separately. Our new result for fη

+(0)

is, within errors, in agreement with our previous one, fη
+(0) = 0.275 ± 0.036, obtained in

ref. [25]. That for fη′

+ (0) is new. Our results agree well with those obtained in ref. [22], from

perturbative QCD factorisation, fη
+(0) = 0.208 and fη′

+ (0) = 0.171, including a rescaling

by a factor
√

2 to bring their definition of the form factors into agreement with ours. We

confirm the finding of ref. [22] that the range of the singlet contribution to the form factor

estimated in ref. [13] is likely to be too large, unless Bg
2 assumes extreme values ∼ 40.

In figure 5 we plot the ratio fη′

+ (0)/fη
+(0) as a function of the Borel parameter. In

the ratio, many uncertainties cancel, in particular that on fB. As we have chosen Bg
2 = 0

as central value, fη′

+ (0)/fη′

+ (0) ≡ tan φ = 0.814 exactly, see eq. (3.7). The figure also

illustrates the change of the result upon inclusion of a non-zero Bg
2 (red/dashed-dotted

curves). The ratio is actually rather sensitive to that parameter. While the dependence on

a2 largely cancels when aη
2 and aη′

2 are set equal, there is a considerable residual dependence

on aη
2 − aη′

2 6= 0 (green/short-dashed curves). While |aη
2 − aη′

2 | = 0.3 as illustrated by these

curves is rather unlikely, and would signal very large OZI-breaking contributions (recall that

aη
2 6= aη′

2 or, equivalently, a1
2 6= a8

2 signals the presence of “wrong-flavour” contributions to

the ηq,s DAs and is set to 0 in the QF mixing scheme), one should nonetheless keep in mind

4This follows from the general formula for asymptotic DAs, u2j1−1(1 − u)2j2−1, with j = 1/2(l + s) the

lowest conformal spin of the operator, and l its canonical dimension, s the Lorentz-spin projection. For

G⊥⊥, one has l = 2 and s = 0 [29].
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that moderate corrections of this type are not excluded and compete with the OZI-allowed

corrections in Bg
2 .

Let us now turn to the dependence of the form factors on q2. In figure 6 we show this

dependence in the range 0 < q2 < 16GeV2 accessible by LCSRs. Again we display in blue

(by long-dashed curves) the dependence of fη(′)

+ (q2) on the sum-rule specific parameters M2

and s0, the green (short-dashed) curves illustrate the dependence on a2 and other parame-

ters and the red (dash-dotted) ones that on Bg
2 . We give two different parametrisations of

the form factors, in terms of a sum of two poles, the so-called BZ parametrisation as given

in ref. [25], and in terms of the BGL parametrisation based on analyticity of f+ in q2 [37].

Both parametrisations are fitted to the LCSR results in the range 0 < q2 < 16GeV2, and

can then be used to extrapolate these results to q2
max = (mB − mη(′))2; this is possible

as both parametrisations include the essential feature of the B∗(1−) pole at q2 = m2
B∗ ,

mB∗ = 5.33GeV, which governs the large-q2 behaviour of b → u vector-current transitions

close to q2
max.

The BZ parametrisation reads

f+(q2) = f+(0)

(
1

1 − q2/m2
B∗

+
rq2/m2

B∗(
1 − q2/m2

B∗

) (
1 − α q2/m2

B

)
)

, (4.3)

with the two shape parameters α, r and the normalisation f+(0). The BGL parametrisa-

tion, on the other hand, is given by

f+(q2) =
1

P (q2)φ(q2, q2
0)

∞∑

k=0

ak(q
2
0)[z(q2, q2

0)]
k , (4.4)

with z(q2, q2
0) =

{q2
+ − q2}1/2 − {q2

+ − q2
0}1/2

{q2
+ − q2}1/2 + {q2

+ − q2
0}1/2

,

φ(q2, q2
0) =

(q2
+ − q2)(

√
q2
+ − q2

− +
√

q2
+ − q2)3/2(

√
q2
+ − q2 +

√
q2
+ − q2

0)

(
√

q2
+ +

√
q2
+ − q2)5(q2

+ − q2
0)

1/4
,

and q2
± = (mB ± mη(′))2 . (4.5)

The “Blaschke” factor P (q2) = z(q2,m2
B∗) accounts for the B∗ pole. q2

0 is a free parameter

that can be chosen to attain the tightest possible bounds, and it defines z(q2
0 , q

2
0) = 0. One

has |z| < 1 for q2
0 < (mB + mη(′))2. In the following we choose q2

0 such that z(0, q2
0) ≡

−z(q2
−, q2

0), i.e. q2
0 = 14.14GeV2 for η and 10.85GeV2 for η′. With these values, |z| becomes

minimal: |z| < 0.13 for η and |z| < 0.08 for η′. The series in (4.4) provides a systematic

expansion in the small parameter z, which for practical purposes has to be truncated at

order kmax. In this paper, we choose kmax = 3.

The advantage of the BZ parametrisation is that it is both intuitive and simple: it can

be obtained from the dispersion relation for f+,

fη(′)

+ (q2) =
Resq2=m2

B∗
f+(q2)

q2 − m2
B∗

+
1

π

∫ ∞

(mB+m
η(′))

2

dt
Im fη(′)

+ (t)

t − q2 − iǫ
, (4.6)
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Figure 7: fη(′)

+ (q2) for central values of input parameters, fitted to the BGL parametrisation (4.4),

for 0 ≤ kmax ≤ 9.

by replacing the second term on the right-hand side by an effective pole. However, it cannot

easily be extended to include more parameters. The strength of the BGL parametrisation,

on the other hand, is that the dominant behaviour in q2 close to the pole at m2
B∗ is

factored out and the remaining q2-dependence is organised as a Taylor-series in the small

q2-dependent parameter z; the truncation of the series can be adjusted to the accuracy

of the available input parameters. In figure 7 we plot fη(′)

+ (q2) parametrised à la BGL

for 0 ≤ kmax ≤ 9. Obviously, the parametrisations converge rapidly with increasing kmax

and only differ at very large q2. The impact of this difference on the predicted branching

ratio (3.3) is however only minor, as this region is phase-space suppressed. In the following,

we choose kmax = 3, which ensures that the total predicted branching ratio agrees within

1% with that obtained for kmax = 9.

In table 1 we give the best-fit parameters for fη(′)

+ in the BZ parametrisation, with

the small effects of non-zero Bg
2 expanded linearly in that parameter. Table 2 contains the

corresponding parameters for the BGL parametrisation with kmax = 3. Finally, in figure 8

we show the dependence of the ratio of branching ratios Rηη′ = B(B → η′eν)/B(B → ηeν)

on Bg
2 . The advantage of this observable is that all hadronic effects are encoded in the form

factors and that |Vub| cancels. The blue (solid) curve corresponds to the branching ratios

obtained from the central values of input parameters; the dependence of these predictions

on the cut-off in k is very small: the long-dashed (blue) curves illustrate the dependence on

kmax = 3±1. On the other hand, Rηη′ also depends on aη
2 6= aη′

2 . This dependence is shown

by the red (short-dashed) curves. The conclusion is that large values of Bg
2 , |Bg

2 | > 5, can

be distinguished from the OZI-breaking parameter |aη
2−aη′

2 |, once an accurate experimental

value of Rηη′ is available, but that for smallish Bg
2 and unknown |aη

2 − aη′

2 | only mutual

constraints on these parameters can be extracted from the data. In this case, as mentioned

before, also twist-4 gluonic DAs can become important.

To summarise, we have calculated the form factors of B → η(′) semileptonic transitions

from QCD sum rules on the light cone, including the gluonic singlet contributions. We have

found that, as expected, these contributions are more relevant for fη′

+ than for fη
+ and can

amount up to 20% in the former, depending on the only poorly constrained leading Gegen-
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f+(0) α r

η 0.231+0.018
−0.020 0.851+0.183

−0.492 0.411−0.030
+0.119

η′ 0.189+0.015
−0.016 + Bg

2

(
+0.002
−0.002

)
0.851+0.185

−0.497 + Bg
2

(
−0.006
+0.008

)
0.411−0.031

+0.122 + Bg
2

(
+0.005
−0.006

)

Table 1: Parameters for the BZ parametrisation (4.3). The uncertainty contains all sources of

error added in quadrature, except for η′, where the uncertainty in Bg
2 is approximated by a linear

term. The upper (lower) terms represent the maximum (minimum) value of the form factor.

η η′

a0 0.0031 ± 0.0003 0.0018 ± 0.0002 ± 0.00002Bg
2

a1 −0.0090 ∓ 0.0034 −0.0058 ∓ 0.0016 ∓ 0.0001Bg
2

a2 0.0243 ± 0.0172 0.0174 ± 0.0166 ∓ 0.0001Bg
2

a3 −0.0908 ∓ 0.0039 −0.1189 ∓ 0.0218 ± 0.0016Bg
2

Table 2: Like tabular 1, but for the BGL parametrisation (4.4) with kmax = 3.

-20. -10. 0. 10. 20.

0.3

0.4

0.5

0.6

0.7

B(
B

→
η
′ e

ν
)/
B(

B
→

η
eν

)

Bg
2

Figure 8: [Colour online] The ratio of branching ratios Rηη′ = B(B → η′eν)/B(B → ηeν) as

a function of the singlet-parameter Bg
2 . Solid (blue) curve: central values of input parameters

and BGL parametrisation with kmax = 3; long-dashed (blue) curves: BGL parametrisations with

kmax varied by ±1. Short-dashed (red) curves: theoretical uncertainty of Rηη′ for Bg
2 = 0, for

aη,η′

2 (1 GeV) varied independently, as in figure 5.

bauer moment Bg
2 of the gluonic twist-2 distribution amplitude of η(′). We also found that

the form factors are sensitive to the values of the twist-2 two-quark Gegenbauer moments

aη,η′

2 which, given the uncertainty of independent determinations, we have set equal to aπ
2 .

The ratio of branching ratios B(B → η′eν)/B(B → ηeν) is sensitive to both a2 and Bg
2

and may be used to constrain these parameters, once it is measured with sufficient accu-

racy. The extraction of |Vub| from these semileptonic decays, in particular B → ηeν, with

negligible singlet contribution, although possible in principle, at the moment is obscured

by the lack of knowledge of a2. We would also like to stress that, in the framework of the

– 17 –
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quark-flavour mixing scheme for the η-η′ system as used in this paper, B → η(′) transitions

probe only the ηq component of these particles. The ηs component could be probed directly

for instance in the b → s penguin transition Bs → η(′)ℓ+ℓ−, although such a measurement

would also be sensitive to new physics in the penguin diagrams.
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A. Spectral density of the two-gluon contribution to f+

The contribution of the twist-2 two-gluon distribution amplitude to the correlation func-

tions Πη
+ and Πη′

+ , eq. (3.7), is given by

ΠP,1
+ =

∫ ∞

m2
b

ds
ρP
1 (s)

s − p2
B

with

ρP
1 (s) = Bg

2asf
P
1 mb

5

36
√

3

m2
b − s

(s − q2)5
{
59m6

b + 21q6 − 63q4s − 19q2s2 + 2s3

+m2
bs(164q

2 + 13s) − m4
b(82q

2 + 95s)
}

+ Bg
2asf

P
1 mb

5

6
√

3

(m2
b − q2)(s − m2

b)

(s − q2)5
{5m4

b + q4 + 3q2s + s2 − 5m2
b(q

2 + s)}

×
{

2 ln
s − m2

b

m2
b

− ln
µ2

m2
b

}
. (A.1)
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